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Analysis of enhanced second-harmonic generation
in periodic nanostructures

using modified rigorous coupled-wave
analysis in the undepleted-pump approximation
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We present an extension of the rigorous coupled-wave analysis technique to analyze second-harmonic genera-
tion (SHG) in periodic optical nanostructures in the undepleted-pump approximation. We apply this method
to analyze SHG in two example nanostructures for which we predict enhanced nonlinearity due to transverse
near-field localization of the fundamental optical field in the nonlinear material. First, we examine a periodic
nanostructure that yields up to twice the transmitted SHG intensity output compared with the bulk nonlinear
material but only for small nanostructure depths because of mismatch of the fundamental and second-
harmonic mode phase velocities. Second, we develop and analyze a modified nanostructure and find that this
nanostructure concurrently achieves transverse localization and phase matching for SHG. In principle, this
permits an arbitrary coherent interaction length, and for several specific nanostructure depths we predict a
transmitted SHG intensity output more than two orders of magnitude greater than that of the bulk material.
© 2002 Optical Society of America
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1. INTRODUCTION
Recent developments in microfabrication techniques and
nanoscale photonic technologies suggest that integrated
optical or photonic systems based on these technologies
may be realized in the near future. In particular, any
high-level integrated photonic system will almost cer-
tainly require the inclusion of nonlinear optical processes
(e.g., to achieve wavelength conversion, switching, signal
amplification, or system reconfigurability). However,
most standard nonlinear optical materials are not readily
compatible with standard microfabrication materials and
techniques. Fortunately, nanostructured material and
device technologies, including artificial dielectric
nanostructures,1,2 form-birefringent nanostructures,3,4

and photonic crystals,5–7 may provide a means to over-
come these incompatibilities. Since optical nanostruc-
tures permit the engineering of their effective optical
properties, they facilitate realization of the desired linear
and nonlinear optical functionalities with use of compat-
ible materials and processes.

Photonic nanostructures not only facilitate the integra-
tion of various optical devices but may also permit im-
provement or enhancement of their optical functionality.
We have previously investigated transverse localization of
the optical field inside a periodic nanostructure and its
potential application to the enhancement of nonlinear op-
tical phenomena such as second-harmonic generation
(SHG).8 We predicted that the electromagnetic fields in-
side the nanostructure would experience strong trans-
verse localization, significantly elevating the field ampli-
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tude in the nonlinear material and thus enhancing the
SHG output. Similar enhancement of nonlinear optical
effects though near-field localization in a variety of sub-
wavelength optical structures has been predicted and ob-
served by a number of investigators.9–13 Further nonlin-
earity enhancement may be realized by achieving phase
matching between the fundamental and second-harmonic
(SH) fields in a nanostructure.14–19 To achieve the larg-
est SHG output, we investigate a nanostructure that em-
ploys both enhancement mechanisms: near-field local-
ization and improved phase matching.

In order to accurately design and analyze nonlinear op-
tical processes in subwavelength nanostructures, it is
necessary to develop appropriate rigorous modeling tools.
The rigorous coupled-wave analysis20 (RCWA) technique
is a well-established tool for analyzing linear electromag-
netic wave interactions with subwavelength periodic
structures in both the near- and the far-field regimes. In
this paper we extend the RCWA method by using a per-
turbational expansion of the nonlinear polarization term
of Maxwell’s equations to analyze the nonlinear SHG pro-
cess in the undepleted-pump approximation. The result-
ing electromagnetic analysis tool permits an accurate in-
vestigation of the SHG enhancement in periodic optical
nanostructures. In Section 2 we describe the extension
of RCWA to model SHG in the undepleted-pump approxi-
mation. In Section 3 we apply this tool to study the SHG
enhancement resulting from two nanostructures: the
original design of Ref. 8 and a modified structure opti-
mized for phase matching. We present a summary and
conclusions in Section 4.
2002 Optical Society of America
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2. ELECTROMAGNETIC ANALYSIS
METHOD
A. Frequency-Separable Formulation of Maxwell’s
Equations
To analyze SHG in the undepleted-pump approximation
by using RCWA, we assume that electromagnetic fields
exist only at the fundamental and second-harmonic fre-
quencies, yielding total fields

EY ~rY , t ! 5 EY v~rY !exp~ jvt ! 1 EY 2v~rY !exp~ j2vt !, (1)

HY ~rY , t ! 5 HY v~rY !exp~ jvt ! 1 HY 2v~rY !exp~ j2vt !, (2)

where EY v(rY ) and EY 2v(rY ) are time-harmonic representa-
tions of the electric fields at the fundamental and second-
harmonic frequencies, respectively, and HY v(rY ) and HY 2v(rY )
are time-harmonic representations of the magnetic fields
at the fundamental and second-harmonic frequencies, re-
spectively. We assume m 5 m0 for simplicity. Since we
wish to investigate nonlinear phenomena in nanostruc-
tures, we must allow the electric displacement to include
both linear and nonlinear effects:

DY ~rY , t ! 5 eEY ~rY , t ! 1 PY NL~rY , t !. (3)

However, for simplicity we assume that the nonlinear po-
larization term contains only the sum-frequency genera-
tion of the second harmonic from the fundamental fre-
quency

PY NL~rY , t ! 5
x~2 !

2
EY v~rY !exp~ jvt !EY v~rY !exp~ jvt ! (4)

and ignore all other x (2) phenomena such as difference-
frequency generation, optical rectification, or cascaded
nonlinear effects, as is consistent with the undepleted-
pump approximation. Substituting into Maxwell’s equa-
tions, we find that

¹ 3 @EY v~rY !exp~ jvt ! 1 EY 2v~rY !exp~ j2vt !#

5 2m
]

]t
@HY v~rY !exp~ jvt ! 1 HY 2v~rY !exp~ j2vt !# (5)

¹ 3 @HY v~rY !exp~ jvt ! 1 HY 2v~rY !exp~ j2vt !#

5
]

]t
@evEY v~rY !exp~ jvt ! 1 e2vEY 2v~rY !exp~ j2vt !

1 PY NL~rY , t !#, (6)

where ev and e2v are the dielectric constants of the mate-
rial at the fundamental and second-harmonic frequencies,
respectively, which in general will be different owing to
material dispersion. Equations (5) and (6) can be decou-
pled into two sets of coupled differential equations at the
fundamental and second-harmonic frequencies. At the
fundamental frequency we obtain the standard homoge-
neous form of Maxwell’s equations:

¹ 3 EY v~rY ! 5 2jvmHY v~rY ! (7)

¹ 3 HY v~rY ! 5 jvevEY v~rY !. (8)

The propagation of the fundamental-frequency field
through the structure is determined by using the stan-
dard RCWA approach and is summarized in Appendix A to
introduce the notation used in the remainder of this sec-
tion as well as to provide a self-contained description of
the SHG RCWA method. At the second-harmonic fre-
quency, however, we obtain an inhomogeneous system of
equations that are due to the nonlinear polarization term:

¹ 3 EY 2v~rY ! 5 2j2vmHY 2v~rY !, (9)

¹ 3 HY 2v~rY ! 5 j2ve2vEY 2v~rY !

1 jvx~2 !EY v~rY !EY v~rY !. (10)

This inhomogeneous system of equations can be treated
with standard techniques and is described in detail in the
following sections.

It is important to note that useful information about
the eigenmodes of the periodic structure can be readily
obtained from this formulation of the RCWA method.
The electromagnetic fields inside the structure are repre-
sented as a superposition of the eigenmodes, as shown in
Eq. (A8). Each column of the eigenvector matrix Wv de-
scribes one of the eigenmodes of the grating, with the re-
spective eigenvalue corresponding to the propagation con-
stant of that mode and the coefficient corresponding to
the complex amplitude of that mode. This information
can be used to identify the energy-carrying modes of the
grating structure and to compare the propagation con-
stant and the transverse profile of each of those modes.

B. Nonlinear Polarization
In the standard RCWA formulation, owing to the periodic
nature of the grating a space-harmonic expansion of the
dielectric constant function of the grating is performed.
In a similar fashion, we can also expand the nonlinear co-
efficient x (2) using a space harmonic expansion:

x~2 !~x ! 5 (
k

x̃k exp~ jkKgx !. (11)

Using the expansions shown in Eqs. (A2) and (11), we can
write the undepleted-pump nonlinear polarization term
as

PY NL~rY ! ' (
i

(
h

(
k

x̃kSY v,iSY v,h

3 exp$2j@~sY v,i 1 sY v,h! • rY 2 kKgx#%.

(12)

Expanding the argument of the exponential function, we
find

~sY v,i 1 sY v,h! • rY 2 kKgx

5 @2k inc,v,x 2 ~i 1 h 1 k !Kg#x 1 2k inc,v,yy. (13)

Since the fundamental field and the nonlinear coefficient
are all represented by harmonic expansions based on the
period of the grating, it is possible to write the nonlinear
polarization term as a single space-harmonic expansion,

PNL,v~rY , t ! 5 (
i

Pi,v~z !exp$2j@~2k inc,x 2 iKg!x

1 2k inc,yy#%, (14)

where
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Pi,v~z ! 5 (
h

(
k

$x̃vxx,i2h2kSv,h,xSv,k,x

1 x̃vxy,i2h2kSv,h,xSv,k,y

1 x̃vxz,i2h2kSv,h,xSv,k,z

1 x̃vyx,i2h2kSv,h,ySv,k,x

1 x̃vyy,i2h2kSv,h,ySv,k,y

1 x̃vyz,i2h2kSv,h,ySv,k,z

1 x̃vzx,i2h2kSv,h,zSv,k,x

1 x̃vzy,i2h2kSv,k,zSv,k,y

1 x̃vzz,i2h2kSv,k,zSv,k,z% (15)

and v P $x, y, z%.
In analyzing the fields at the second-harmonic fre-

quency, we perform a space-harmonic expansion of the
fields similar to that of Eqs. (A2) and (A3):

EY 2v~rY ! 5 (
i

$S2v,i,x~z !x̂ 1 S2v,i,y~z !ŷ

1 S2v,i,z~z !ẑ%exp~2jsY 2v,i • rY ! (16)

HY 2v~rY ! 5 Ae0

m0
(

i
$U2v,i,x~z !x̂ 1 U2v,i,y~z !ŷ

1 U2v,i,z~z !ẑ%exp~2jsY 2v,i • rY ! (17)

To find the transverse wave vector, we consider that the
second-harmonic field is generated by the fundamental
field, and thus the transverse components of the second
harmonic wave vector must be directly related to those at
the fundamental frequency:

sY 2v,i 5 ~2k inc,x 2 iKg!x̂ 1 2k inc,yŷ. (18)

To match the range of the space-harmonic expansion, the
second-harmonic field expansion must have 2p 2 1
5 4a 1 1 components indexed by i P $22a,..., 21, 0,
1,..., 2a%.

C. Solution of the Second-Harmonic-Frequency Fields
Using the inhomogeneous equations for the fields at the
second-harmonic frequency, and inserting the space-
harmonic expansions for the electric and magnetic fields
shown in Eqs. (16) and (17), respectively, as well as the
expansion for the nonlinear polarization shown in Eq.
(15), we obtain a coupled system of equations in matrix
form:

]

]z S SY 2v,x~z !

SY 2v,y~z !

UY 2v,x~z !

UY 2v,y~z !

D 5 A2vS SY 2v,x~z !

SY 2v,y~z !

UY 2v,x~z !

UY 2v,y~z !

D
1 S k̄2v,xē2v,zz

21 PY z~z !

k̄2v,yē2v,zz
21 PY z~z !

PY y~z ! 2 eY2v,yzē2v,zz
21 PY z~z !

2PY x~z ! 1 ē2v,xzē2v,zz
21 PY z~z !

D ,

(19)
where the matrix A2v represents the coupling between
modes that are due to the properties of the grating and
Maxwell’s equations and is essentially the same as in the
homogeneous fundamental-frequency solution. This in-
homogeneous system of equations can then be solved by
using standard techniques. Defining

S SY 2v,x~z !

SY 2v,y~z !

UY 2v,x~z !

UY 2v,y~z !

D 5 W2vQY ~z !, (20)

where W2v is the eigenvector matrix obtained from ma-
trix A2v [equivalent to matrix Wv shown in Eq. (A8) but
for the second-harmonic frequency), we can write the sys-
tem of partial differential equations in Eq. (19) as

]

]z
QY ~z ! 5 W2v

21A2vW2vQY ~z ! 1 W2v
21YY ~z !, (21)

where

YY ~z ! 5 S k̄2v,xē2v,zz
21 PY z~z !

k̄2v,yē2v,zz
21 PY z~z !

PY y~z ! 2 ē2v,yzē2v,zz
21 PY z~z !

2PY x~z ! 1 ē2v,xzē2v,zz
21 PY z~z !

D . (22)

The partial differential equation shown in Eq. (21) con-
sists of a homogeneous and an inhomogeneous part, so we
explicitly separate the homogeneous and the inhomoge-
neous parts of the solution:

QY ~z ! 5 QY ~h!~z ! 1 QY ~ ih!~z !. (23)

The homogeneous part of the solution is the same as in
the fundamental-frequency case:

QY i
~h!~z ! 5 c2v,i exp@l2v,i~z 2 z0,i!#, (24)

where c2v,i is the amplitude coefficient of the ith eigen-
mode to the determined by the boundary conditions, l2v,i
is the eigenvalue corresponding to the ith eigenmode, and
z0,i is defined by

z0,i 5 H d, 0 < i , 2p

0, 2p < i , 4p
. (25)

The renormalization shown in Eq. (25) is performed to en-
hance numerical stability (see Ref. 21 for a more detailed
explanation). The inhomogeneous part of the solution
produces the inhomogeneous term in the partial differen-
tial equation of Eq. (21) and is given by

QY i
~ ih!~z ! 5

¦

exp~l2v,iz !E
d

z

exp~2l2v,iz8!

3 (
j

W2v,ij
21 Yj~z8!dz8, 0 < i , 2p,

exp~l2v,iz !E
0

z

exp~2l2v,iz8!

3 (
j

W2v,ij
21 Yj~z8!dz8, 2p < i , 4p,

(26)

with use of a renormalization similar to that shown in Eq.
(25).
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Including the inhomogeneous part of the solution with the
same renormalization as shown in Eq. (25), we find that
the field mode amplitude coefficients at the front interface
of the grating structure are given by

QY i~0 ! 5 5
c2v,i

2 exp~2l2v,id !

2 E
0

d

exp~2l2v,iz8!(
j

W2v,ij
21 Yj~z8!dz8,

0 < i , 2p,

c2v,i
1 , 2p < i , 4p,

(27)

and at the back interface of the grating structure
(z 5 d) we find that

QY i~d ! 5 5
c2v,i

2 , 0 < i , 2p,

c2v,i
1 exp~l2v,id ! 1 exp~l2v,id !

3 E
0

d

exp~2l2v,iz8!(
j

W2v,ij
21 Yj~z8!dz8,

2p < i , 4p.
(28)

Substituting Eqs. (27) and (28) into Eq. (20), we can ob-
tain the space-harmonic expansion coefficients of the
fields at the second-harmonic frequency at the front and
back interfaces of the nonlinear grating layer.

D. Boundary Condition Matching
To obtain the complete solution of the fields inside the
nanostructure, it is necessary to determine the unknown
coefficients $c2v% by matching the tangential components
of the fields at each interface. The fields in the incident
and transmitted half-spaces on either side of the grating
can be represented by a set of plane waves with trans-
verse wave vectors matched to the space-harmonic modes
inside the grating. Thus there are p 5 2a 1 1 plane
waves in each half-space, with complex amplitude coeffi-
cients collected into vectors rY and tY in the incident and
transmitted half-spaces, respectively. The space-
harmonic representation of the transmitted fields at the
interface (z 5 d1) can be written as

S SY 2v,x~d1!

SY 2v,y~d1!

UY 2v,x~d1!

UY 2v,y~d1!

D 5 F0 I

0 HG S rY
tY D , (29)

where I is the identity matrix and matrix H yields the
magnetic field amplitude coefficients from the electric-
field amplitude coefficients of the free-space modes in the
half-spaces on either side of the structure. These rela-
tions can be found in a straightforward way by using Eq.
(7), and an explicit definition of the elements of matrix H
can be found in Eq. (22) or Eq. (26) of Ref. 20. Similarly,
the space-harmonic representation of the fields at the in-
cident boundary (z 5 02) is given by

S SY 2v,x~02!

SY 2v,y~02!

UY 2v,x~02!

UY 2v,y~02!

D 5 F I 0

H 0G S rY
tY D 1 F I 0

H 0G S bY

0 D , (30)
where the vector bY represents the incident field. For the
fundamental-frequency waves, the vector bY is unity for
the elements corresponding to zeroth-order electric and
magnetic fields and zero otherwise [see Eqs. (21) and (22)
of Ref. 20]. In contrast, for the second-harmonic waves,
the field is assumed to be generated inside the nonlinear
material, and the externally incident field is uniformly
zero.

Owing to the orthogonality of the space-harmonic basis,
at each interface every transverse space-harmonic compo-
nent must independently satisfy the boundary conditions.
By combining Eqs. (20), (27), and (30) for the fields at the
incident boundary, we obtain the expression

F I 0

H 0G S rY

tY D 1 S IbY

HbY D 5 FW2v
00 @exp~2l2vd !# W2v

01

W2v
10 @exp~2l2vd !# W2v

11 G S cY2v,i
2

cY2v,i
1 D

1 FW2v
00 W2v

01

W2v
10 W2v

11 G S 2QY ~ ih!,2~0 !

0 D ,

(31)

where QY (ih),2(0) indicates only the top half (0 < i
, 2p) of the vector QY (ih)(0), and the expansion

W2v 5 FW2v
00 W2v

01

W2v
10 W2v

11 G
has been applied. Similarly, by combining Eqs. (20), (28),
and (29) for the fields at the transmitted boundary, we ob-
tain the expression

F0 I

0 HG S rY

tY D 5 FW2v
00 W2v

01 @exp~l2vd !#

W2v
00 W2v

11 @exp~l2vd !#
G S cY2v

2

cY2v
1 D

1 FW2v
00 W2v

01

W2v
10 W2v

11 G S 0

QY ~ ih!,1~d !
D , (32)

where QY (ih),1(d) indicates only the bottom half (2p < i
, 4p) of the vector QY (ih)(d).

Owing to numerical stability issues, Eqs. (31) and (32)
cannot be solved by substitution.21 Instead, we combine
them into a single system of equations:

FW2v
00 @exp~2l2vd !# W2v

01 2I 0

W2v
10 @exp~2l2vd !# W2v

11 2H 0

W2v
00 W2v

01 @exp~l2vd !# 0 2I

W2v
10 W2v

11 @exp~l2vd !# 0 2H
G

3 S cY2v
2

cY2v
1

rW

tY
D 5 S W2v

00 QY ~ ih!,2~0 ! 1 IbY

W2v
10 QY ~ ih!,2~0 ! 1 HbY

2W2v
01 QY ~ ih!,1~d !

2W2v
11 QY ~ ih!,1~d !

D . (33)

Solution of Eq. (33) yields the complex amplitude coeffi-
cients rY , cY2v , and tY, which respectively describe the re-
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flected, internal, and transmitted fields of the grating at
the second-harmonic frequency. Thus this technique per-
mits the analysis of second-order nonlinear optical phe-
nomena in periodic nanostructures in the undepleted-
pump approximation.

3. NANOSTRUCTURE DESIGN FOR
ENHANCED SECOND-HARMONIC
GENERATION
A. Transverse Near-Field Localization
In a previous paper8 we described the transverse localiza-
tion of the fundamental frequency field in a periodic sub-
wavelength nanostructure and performed an approximate
analysis of the enhancement of the SHG output that is
due to this localization. This approximate analysis was
based solely on transverse effects, and thus it did not take
into account the mismatch in the phase velocities of the
fundamental and second-harmonic fields or the effects of
the finite length of the nanostructure. For a more accu-
rate analysis, we apply the extended RCWA method de-
scribed above to investigate a similar structure, but for a
very small grating thickness and replacing ultrashort-
pulse illumination with a monochromatic field. The
nanostructure is a subwavelength square grating (see
Fig. 1) of period L 5 0.65l, fill factor F 5 0.09, and
depth varying from d 5 0.005l to d 5 5.0l in units of
the fundamental wavelength in vacuum. The refractive
index of the material is taken to be nv 5 3.346 at the fun-
damental frequency and n2v 5 3.539 at the second-
harmonic frequency, corresponding to the material prop-
erties of GaAs at 1.907 mm and 0.954 mm, respectively.
These particular values were selected to ensure that the
absorption coefficient of GaAs is negligible for both the
fundamental and the second-harmonic wavelengths.
The nonlinear coefficient is taken to be 0.001 in inverse
units of the field amplitude, corresponding to the second-
order nonlinear coefficient of GaAs (x (2) 5 240 pm/V from

Fig. 1. Schematic diagram of the transverse field localization
nanostructure for SHG enhancement. The nanostructure is a
subwavelength periodic square grating with period L 5 0.65l,
fill factor F 5 0.09, index of refraction nv 5 3.346 at the funda-
mental frequency and n2v 5 3.539 at the second-harmonic fre-
quency, and depth ranging from d 5 0.005l to d 5 5.00l in
units of the fundamental wavelength in vacuum. The structure
is assumed to be infinite and periodic in the x̂ direction and infi-
nite and uniform in the ŷ direction. The nanostructure is illu-
minated by a normally incident plane wave at the fundamental
frequency with wave vector kY inc and electric field EY inc polarized in
the ŷ direction.
Ref. 15) with an applied field amplitude of 4.17
3 106 V/m. The fundamental and second-harmonic
fields are both assumed to be polarized in the ŷ direction,
as shown in Fig. 1. A nanostructure of this type would be
fabricated most easily either by deep etching into a sub-
strate or a multilayer growth; the resulting structure
would differ from that shown in Fig. 1 because of the pres-
ence of the substrate and the finite extent of the structure
in the transverse direction. Although it is possible to
perform the analysis for a structure that incorporates
these characteristics, the interpretation of the results
would be significantly more complicated and therefore
less clear. Thus we analyze the simple nanostructure
shown in Fig. 1—which is assumed to be infinitely peri-
odic in the x̂ direction, infinite and uniform in the ŷ direc-
tion, finite and uniform in the ẑ direction, surrounded by
vacuum on both sides, and not explicitly including the
substrate—in order to investigate and present in a
straightforward manner the fundamental characteristics
of the optical field interaction with the nanostructure.

Using the RCWA-based undepleted-pump SHG model-
ing tool, we investigate the total transmitted SHG output
of the nanostructure and compare it with that of the bulk
nonlinear material. Figure 2 shows the total transmit-
ted SHG output of the structure as a function of depth for
the nanostructure and the bulk material. For a certain
range of depths, the nanostructure yields a greater SHG
intensity output than the bulk material. The peak oc-
curs for a depth of d 5 0.29l, with an output from the
nanostructure approximately 2.05 times that of the bulk
material of the same thickness. For greater material
thicknesses, however, in most cases the nonlinear output
of the bulk material exceeds that of the nanostructure.
The oscillations in the total transmitted SHG intensity as
a function of depth for both the nanostructure and the
bulk material are due to Fabry–Perot effects and phase
velocity mismatch between the fundamental and second-
harmonic waves and will be considered in the following.

In order to analyze further the nonlinear output of
the nanostructure, it is useful first to consider the results
for the bulk nonlinear material shown in Fig. 2. It is
clear that the transmitted SHG output as a function of

Fig. 2. Total transmitted SHG output intensity for the nano-
structure shown in Fig. 1 and bulk nonlinear material as a func-
tion of depth.
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the nonlinear material thickness results from the super-
position of several phenomena. First, the thin slab of
nonlinear material acts as a Fabry–Perot cavity owing to
the reflection from the front and back interfaces, thus
modulating the output of the SHG process. For a given
vacuum wavelength l8, the Fabry–Perot resonances are
found at integer multiples of l 5 l8/(2n). The lowest-
order resonant material thicknesses for the fundamental
and second-harmonic frequencies are lv 5 0.149l and
l2v 5 0.071l, respectively. Although an approximation,
it can be seen in Fig. 2 that the integer multiples of these
two characteristic lengths correspond to the positions of
the numerous narrow peaks in the total transmitted SHG
of the bulk material. Second, we must also consider the
phase mismatch between the fundamental and second-
harmonic fields that is due to material dispersion. The
effective propagation speeds of the fields inside the slab at
the fundamental and second-harmonic frequencies are
vv 5 0.2989c and v2v 5 0.2826c, respectively (where c is
the speed of light in vacuum), corresponding to a charac-
teristic length of lc 5 1.30l. Since this is the distance
for the fundamental and second-harmonic fields to
dephase by p, we expect the SHG output to reach a maxi-
mum at odd multiples of this characteristic length and to
return to zero at even multiples of this length as a result
of destructive interference. This corresponds to the en-
velope of the total transmitted SH intensity function for
the bulk material case as seen in Fig. 2.

To understand the SHG output characteristics of the
nanostructure, we will perform a similar analysis. How-
ever, we must first determine the propagation character-
istics of the nanostructure modes. Using the RCWA
method, we can obtain this information from the eigenval-
ues and eigenvectors of the periodic structure [see Eq.
(A8)]. Each eigenvector describes one of the natural
modes of the nanostructure, and the corresponding eigen-
value describes its propagation characteristics—the real
part represents the decay coefficient, and the imaginary
part represents the propagation constant (which is analo-
gous to the wave vector for a plane wave). Furthermore,
owing to the symmetry of the nanostructure with respect
to the z axis (the finite dimension of the nanostructure),
the eigenmodes will exist in pairs with eigenvalues of op-
posite sign, representing equivalent modes propagating in
opposite directions. For clarity, in the following only one
of each pair of eigenmodes is shown. Figure 3 shows re-
sults of an analysis of the nonevanescent energy-carrying
modes of the nanostructure, obtained by selecting only
those eigenmodes with a real part of the eigenvalue less
than 1028 in magnitude and an amplitude coefficient
greater than 0.01 in magnitude. At the fundamental
frequency there is only a single mode, shown in Fig.
3(a), which is transversely localized in the high-
refractive-index region of the nanostructure, as predicted
in our previous work.8 In addition, there are two modes
at the second-harmonic frequency, shown in Figs. 3(b) and
3(c), one localized in the high-refractive-index region and
one localized primarily in the air gap of the nanostruc-
ture. Figure 3 also shows the real and imaginary parts
of the eigenvalues for each of the modes. These con-
stants correspond to Fabry–Perot resonance characteris-
tic lengths of lv 5 0.269l for the fundamental mode and
l2v,1 5 0.278l and l2v,2 5 0.092l for the second-
harmonic modes. The phase velocities of the three modes
shown in Figs. 3(a)–3(c) are vv 5 0.538c, v2v,1 5 1.10c,
and v2v,2 5 0.370c, corresponding to phase matching
characteristic lengths of lc,1 5 0.527l and lc,2 5 0.592l.
These parameters describe qualitatively the transmitted
SHG intensity as a function of depth from the nanostruc-
ture.

For this nanostructure geometry, phase matching be-
tween the fundamental and either of the second-harmonic
modes is not achieved for these depth ranges. Further-
more, since the difference in phase velocity is greater for
the nanostructure than for the bulk material, we do not
expect in general to be able to achieve enhanced SHG out-
put from this nanostructure relative to the bulk material,
despite the transverse field localization. In fact, the par-
ticular depths discussed above where the nanostructure
yields a greater SHG transmitted intensity than the bulk
material are due to the differing effective indices of re-
fraction and the Fabry–Perot modes of the structure, re-
sulting in a significantly higher fundamental field ampli-
tude in the nanostructure in comparison with the bulk
material of the same depth. However, the peak transmit-
ted SH intensity from the nanostructure is approximately
30% of that obtained from the bulk material, although the
nanostructure has only 9% of the nonlinear material by
volume as well as a greater phase mismatch between the
fundamental and SH fields. This fact suggests that the
nanostructure does in fact contribute to the enhancement
of the SHG process through transverse localization of the

Fig. 3. Properties of the nonevanescent energy-carrying eigen-
modes of the nanostructure shown in Fig. 1 for the (a) fundamen-
tal and (b), (c) second-harmonic wavelengths computed by using
the modified RCWA tool: For each mode the transverse profile
in one period of the nanostructure as well as the attenuation co-
efficient and propagation constant (real and imaginary parts of
the corresponding eigenvalue Z respectively) are shown.
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field; but to achieve superior performance, phase match-
ing must be realized in the nanostructure.

B. Phase Matching
To implement a SHG enhancement nanostructure that in-
corporates both transverse field localization and phase
matching, we investigate an alternative nanostructure
having two ridges per period, instead of one. In Subsec-
tion 3.A we found that the fundamental frequency mode
of the nanostructure is transversely localized in the high-
refractive-index region, while the second-harmonic fre-
quency mode of interest is transversely localized in the
low-refractive-index region and has a phase velocity sig-
nificantly higher than that of the fundamental frequency
mode. Thus we expect that the introduction of a second,
smaller nonlinear material ridge into the center of the
low-refractive-index region will affect the phase velocity
of the second-harmonic mode more dramatically. Specifi-
cally, the introduction of a high-refractive-index material
in a region where the fundamental mode has a low ampli-
tude but the second-harmonic mode has a large amplitude
will serve to significantly reduce the phase velocity of the
second harmonic mode while leaving the fundamental
mode largely unaffected. By engineering this differential
slowing of the two modes to exactly compensate for the
existing phase velocity mismatch between the two modes,
we can achieve phase matching. It is important to point
out that the second material ridge must be smaller than
the original nanostructure ridge; otherwise, the mode
properties of the nanostructure would be qualitatively
changed. As in the previous example, for clarity we con-
sider a nanostructure that is infinitely periodic in the x̂
direction, infinite and uniform in the ŷ direction, finite,
uniform in the ẑ-direction, surrounded by vacuum on both
sides, and not explicitly including the substrate.

A schematic drawing of the structure is shown in Fig. 4.
The period of the grating is again L 5 0.65l, and the fill

Fig. 4. Schematic diagram of the modified transverse field local-
ization nanostructure with improved phase matching, consisting
of a periodic subwavelength grating having two nonlinear mate-
rial ridges with fill factors F1 5 0.063 and F2 5 0.03 per period
L 5 0.65l. The index of refraction is nv 5 3.346 at the funda-
mental frequency and n2v 5 3.539 at the second-harmonic fre-
quency, and the depth ranges from d 5 0.005l to d 5 5.00l in
units of the fundamental wavelength in vacuum. The structure
is assumed to be infinite and periodic in the x̂ direction and infi-
nite and uniform in the ŷ direction. The nanostructure is illu-
minated by a normally incident plane wave at the fundamental
frequency with wave vector kY inc and electric field EY inc polarized in
the ŷ direction.
factors of the two ridges are F1 5 0.063 and F2 5 0.03.
Analyzing the nonevanescent energy-carrying modes of
the nanostructure, we find two modes each at the funda-
mental and second-harmonic frequencies, which are
shown in Figs. 5(a)–5(d). At each frequency, one mode is
localized in the wide nonlinear material ridge (with fill
factor F1) shown in the center of the figure, while the
other mode is localized primarily in the narrow second
ridge (with fill factor F2). Figure 5 also shows the real
and imaginary parts of the mode propagation constants of
the four modes.

To verify the ability to control the phase velocities of
the fundamental and second-harmonic modes by using
the geometry of the nanostructure, we investigate the de-
pendence of the mode phase velocities on the fill factors
F1 and F2 of the nanostructure. We compute the phase
velocities of the four modes as a function of the narrow-
ridge fill factor F2 while keeping the wide-ridge fill factor
F1 5 0.063 constant, as shown in Fig. 6. In this case, the
fundamental and second-harmonic modes that are local-
ized in the wide F1 ridge [labeled F-1 and SH-1 in Fig. 6,
corresponding to the modes shown in Figs. 5(a) and 5(c),

Fig. 5. Properties of the nonevanescent energy-carrying eigen-
modes of the modified nanostructure shown in Fig. 4 for the (a),
(b) fundamental and (c), (d) second-harmonic wavelengths com-
puted by using the modified RCWA tool: For each mode the
transverse profile in one period of the nanostructure as well as
the attenuation coefficient and propagation constant (real and
imaginary parts of the corresponding eigenvalue Z) are shown.
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respectively] have an approximately constant phase ve-
locity with respect to F2 , while the other two modes [la-
beled F-2 and SH-2 in Fig. 6, corresponding to the modes
shown in Figs. 5(b) and 5(d), respectively] exhibit a de-
pendence of their phase velocity on the parameter F2 .
Thus the phase velocities of the fundamental mode local-
ized in the wide F1 ridge and the second-harmonic mode
localized in the narrow F2 ridge can be adjusted essen-
tially independently through the geometry of the nano-
structure. More important, the phase velocities can be
made equal to achieve phase matching for SHG, as shown
in Fig. 6, for the nanostructure geometry shown in Fig. 4.

Using the mode propagation constants from Figs. 5(a),
5(b), 5(c), and 5(d) for the geometry shown in Fig. 4, we
find the phase velocities of the modes to be vv,1
5 0.630c, vv,2 5 1.32c, v2v,1 5 0.428c, and v2v,2
5 0.630c, respectively. The addition of the second
high-refractive-index ridge results in good matching of
the phase velocities of the ‘‘slow’’ fundamental frequency
mode (vv,1) and the ‘‘fast’’ second-harmonic frequency
mode (v2v,2). The characteristic length of the propaga-

Fig. 6. Phase velocities of the two fundamental (F-1 and F-2)
and two second-harmonic (SH-1 and SH-2) nonevanescent
energy-carrying eigenmodes of the nanostructure shown in Fig. 4
as a function of fill factor F2 with F1 5 0.063 constant.

Fig. 7. Total transmitted SHG output intensity for the modified
nanostructure shown in Fig. 4 and bulk nonlinear material as a
function of depth.
tion constant mismatch of these two modes is lc
5 981.8l. As a result, we expect that phase mismatch
will not significantly affect the output of the nonlinear
process in the modified nanostructure, at least over the
practical nanostructure sizes under consideration.
Phase matching in the modified nanostructure results in
a significant enhancement of the second-harmonic output
relative to the original nanostructure design as well as to
the bulk nonlinear material.

A comparison of the total transmitted SHG intensity
of the modified nanostructure and bulk material as
a function of the nonlinear material depth is shown in
Fig. 7. For both the nanostructure and the bulk mate-
rial, Fabry–Perot effects still strongly affect the SHG out-
put. However, maxima of the total transmitted SHG out-
put of the nanostructure are significantly higher than
those of the bulk material. For example, for a depth
d 5 0.395l, the nanostructure yields a total transmitted
SHG intensity of approximately 2.4 times the maximum
obtained from the phase-mismatched bulk material for
any depth shown; and for a depth d 5 2.382l, the ratio is
approximately 463. As shown in Fig. 7, the peak corre-
sponding to the enhanced SHG output in the latter case is
extremely narrow, suggesting that the elevated output is
strongly dependent on the longitudinal resonances of the
nanostructure. In contrast, in the former case the width
of the enhanced SHG output peak is relatively broad, sug-
gesting that the lower enhancement factor can be
achieved without extreme sensitivity to the nanostruc-
ture geometry (thus requiring less rigid fabrication toler-
ances). In addition, in the former case the structure
depth is significantly less than the characteristic phase
matching length in the bulk material, indicating that the
elevated SHG output of the modified nanostructure is not
solely the result of longitudinal resonances or improved
phase matching in the nanostructure. Furthermore, the
fact that the modified nanostructure consists of only 9.3%
nonlinear material by volume emphasizes the importance
of the transverse near-field localization effect in the nano-
structure. Thus these results demonstrate that sub-
wavelength periodic optical nanostructures can be ap-
plied to enhance SHG via two mechanisms: (1)
transverse field localization in the nonlinear material to
increase the peak power and (2) engineering of the propa-
gation speeds of the fundamental and SH modes to
achieve phase matching.

4. CONCLUSION
We have extended the well-established RCWA algorithm
to analyze SHG in periodic nanostructures in the
undepleted-pump approximation. This nonlinear elec-
tromagnetic modeling tool permits rigorous analysis of
the structure and propagation characteristics of the nano-
structure modes, facilitating the investigation of near-
field phenomena in the nanostructures as well as the de-
sign of novel nonlinear optical devices. In principle, it
would be possible to continue the perturbation expansion
of the nonlinear polarization term, permitting the analy-
sis of downconversion (including the depleted-pump case)
as well as other nonlinear optical phenomena of interest,
but much more computational power would be required.
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In addition, using this tool, we have investigated two
nanostructures for enhanced SHG. In the first case, a
structure for transverse localization of the field in the
nonlinear material provides evidence of enhanced perfor-
mance resulting from the field localization, but the overall
transmitted SHG output of the device was lower than
that of the bulk material owing to phase mismatch in the
structure. In the second case, the nanostructure was
modified to achieve phase matching through the introduc-
tion of a second high-refractive-index material ridge per
period. This structure yields increased SHG transmitted
intensity in comparison with the bulk nonlinear material,
more than two orders of magnitude in some cases, despite
the fact that it is composed of only 9.3% nonlinear mate-
rial by volume. Thus, using the additional design de-
grees of freedom provided by the periodic nanostructure
makes it possible to construct a device capable of enhanc-
ing SHG efficiency through both transverse near-field lo-
calization and phase matching in an isotropic nonlinear
material. As a result, this approach could provide sig-
nificantly improved performance in comparison with
other microstructure- and nanostructure-based tech-
niques to enhance SHG efficiency, albeit by using a more
complex nanostructure with smaller features. The rela-
tive merits of the various optical nonlinearity enhance-
ment techniques depend strongly on the nature and re-
quirements of the specific application of interest; thus a
direct comparative analysis is beyond the scope of this pa-
per and will be investigated in the future.

Finally, the presence of significant Fabry–Perot effects
indicates that longitudinal localization of the field in the
cavity formed by the nanostructure is present and dra-
matically influences the SHG output. In fact, the appli-
cation of the longitudinal modes of resonant cavities to
enhance the field amplitude and thus nonlinear optical ef-
fects is a well-known technique. More-advanced device
designs could eliminate cavity effects through nanostruc-
tured antireflection layers to relax design tolerances or to
take advantage of cavity phenomena by using photonic
crystal techniques to further enhance the nonlinear out-
put. Finally, an important benefit of this approach to en-
hance the efficiency of SHG in nanostructures is that the
materials and designs used are compatible with standard
microfabrication techniques, facilitating integration with
other photonic devices and systems.

APPENDIX A: SUMMARY OF STANDARD
RIGOROUS COUPLED-WAVE ANALYSIS
FORMULATION
This appendix, included for completeness, summarizes
the standard formulation of RCWA and introduces the no-
tation used in this paper. A more detailed description of
the method can be found in Refs. 20–24. The grating re-
gion is taken to be infinitely periodic in one transverse di-
mension (x) with grating period L, infinite and uniform in
the other transverse dimension ( y), and finite and uni-
form in the depth dimension (z). The dielectric constant
function inside the grating may be a tensor to account for
anisotropic materials, but it depends only on the coordi-
nate x and is a periodic function:
ē~rY ! 5 ē~rY 1 L x̂ ! 5 H ēv~x !, 0 , z , d

e0 z , 0;z . d
. (A1)

The incident field is assumed to be a monochromatic
plane wave of unit amplitude with wave vector kY inc . Un-
der these assumptions, the electric and magnetic fields in-
side the grating region may be represented by using a
space-harmonic field expansion:

EY v~rY ! 5 (
i

$Sv,i,x~z !x̂ 1 Sv,i,y~z !ŷ

1 Sv,i,z~z !ẑ%exp~2jsY v,i • rY !, (A2)

HY v~rY , t ! 5 Ae0

m0
(

i
@Uv,i,x~z !x̂ 1 Uv,i,y~z !ŷ

1 Uv,i,z~z !ẑ#exp~2jsY v,i • rY !, (A3)

where SY v,i and UY v,i are the space-harmonic-expansion
amplitude coefficients for the electric and magnetic fields,
respectively, e0 is the dielectric permittivity of free space,
and m0 is the magnetic permeability of free space. The
space-harmonic expansion contains a total of p 5 2a
1 1 elements, referenced by index i P $2a,..., 21,
0, 1,..., a%. The transverse component of the wave vec-
tor is given by

sY v,i 5 ~k inc,x 2 iKg!x̂ 1 k inc,yŷ, (A4)

where Kg 5 2p/L. Since the grating is periodic, the
(vw) component (v, w P $x, y, z%) of the dielectric con-
stant tensor can also be expanded in a space-harmonic se-
ries:

ev,vw~x ! 5 e0(
k

ẽv,k,vw exp~ jkKgx !. (A5)

A similar expansion is performed for the electric and mag-
netic fields in the half-spaces on either side of the grating
region. Inserting Eqs. (A2), (A3), and (A5) into Maxwell’s
equations and simplifying produces a coupled system of
first-order partial differential equations:

]

]z S SY v,x~z !

SY v,y~z !

UY v,x~z !

UY v,y~z !

D 5 AvS SY v,x~z !

SY v,y~z !

UY v,x~z !

UY v,y~z !

D , (A6)

where the matrix Av is determined by the structure of the
grating and Maxwell’s equations [see, for example, Eq.
(32) of Ref. 24 for a detailed description], and the vector
SY v,x(z) contains the p 5 2a 1 1 elements of the space-
harmonic expansion coefficients

SY v,x~z ! 5 S SY v,2a~z !

SY v,2a11~z !

¯

SY v,a~z !

D , (A7)

with a similar expansion for the vectors SY v,y(z), UY v,x(z),
and UY v,y(z).

Using the eigenvector matrix Wv corresponding to the
matrix Av , we can write the solution to Eq. (A6) as
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S SY v,x~z !

SY v,y~z !

UY v,x~z !

UY v,y~z !

D 5 Wv exp~Dz !cYv , (A8)

where cYv is a vector of length 4p containing the ampli-
tude coefficients of each eigenmode and the matrix D is a
diagonal matrix containing the eigenvalues. Using Eq.
(A8) to propagate the fields across the grating region, and
applying the appropriate boundary conditions at each in-
terface, we can find the amplitude coefficients cYv (see, for
example, Ref. 20 for a more detailed explanation).
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