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Cross talk of wavelength-multiplexed quasi-infinite holograms
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The cross talk of wavelength-multiplexed quasi-infinite (written in polychromatic light) holograms is evaluated.
Under plausible conditions this cross talk is negligible. The typical information capacity limit of such
holograms is evaluated as 1012 bits for a 1-cm3 volume.  1998 Optical Society of America
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In view of the fast developments in semiconductor
frequency-tuned lasers, wavelength multiplexing of vol-
ume holograms is considered promising for optical
memory systems.1 – 3 However, with wavelength mul-
tiplexing as well as with other multiplexing methods,
there exists cross talk that limits memory capacity.1,4 – 7

This cross-talk noise is associated with the f inite longi-
tudinal size of the recording material.5 A method that
allows one to suppress the cross talk for wavelength-
multiplexed storage and uses holograms that are lim-
ited in the longitudinal direction, called quasi-infinite
holograms, was presented in Ref. 8. Quasi-infinite
holograms can be recorded by use of two short light
pulses, two stochastic fields, or averaged interfer-
ence of two monochromatic waves whose wavelengths
are swept during the recording process. In this Let-
ter we investigate the cross-talk noise of wavelength-
multiplexed quasi-infinite holograms and estimate the
information capacity limit of such holographic storage
systems.

Consider, as an example, a volume hologram
recorded with two counterpropagating short pulses,
as illustrated in Fig. 1. The spatial interference
pattern along the longitudinal direction is weighted
by the mutual coherence function of these partially
coherent fields.9 Let gstdexpsivctd be the mutual co-
herence function of the signal and the reference waves,
where gstd is the envelope and vc is the center fre-
quency. Volume holographic materials are sensitive
to spatial intensity modulation, and thus the mutual
coherence function is recorded as a volume grating
with amplitude varying along the longitudinal coor-
dinate z  vty2, where v is the light velocity in the
medium and the factor of 2 accounts for the counter-
propagation recording. This grating is described by
hszd  gs2zyvdexpsivc2zyvd. When interfering waves
possess time-limited mutual coherence functions, the
recorded grating will be of limited extent along the z
axis and therefore can be recorded completely in a ma-
terial of f inite longitudinal dimension.

For the hologram reconstruction process, the quasi-
infinite hologram can be seen as a superposition of
monochromatic gratings of infinite spatial extent
in z, with the grating amplitude weighted by the
Fourier transform of hszd. In such a description,
when a quasi-infinite hologram is reconstructed by a
monochromatic plane wave of frequency v, only the
Bragg-matched, infinite gratings will determine
the amplitude diffraction efficiency. Consequently,
the amplitude diffraction efficiency’s dependence on
0146-9592/98/120963-03$15.00/0
frequency v can be expressed by the Fourier transform
of the mutual coherence function; i.e., the normalized
diffraction eff iciency Gsjd will be proportional to the
mutual spectral density9:
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gstdexps2ijtddt , (1)

where j  v 2 vc. Furthermore, notice that even
for recording of wide angular bandwidth signals, the
quasi-infinite holograms will not be truncated by
the material boundaries, and Eq. (1) will be valid for
all the components of the angular bandwidth. In con-
trast, recording such holograms with monochromatic
light will result in gratings that are truncated by the
material boundaries, introducing windows that vary
with the angular components, which in turn leads to
the variation of diffraction eff iciency spectrum within
the angular bandwidth.

The wavelength multiplexing of quasi-infinite holo-
grams can be realized by use of different center fre-
quencies vcj  v0 1 jD, where v0 is a center of
the multiplexing frequency band, j  0, 61, . . . 6 Jy2
is the integer corresponding to a given information
page, J is an even integer such that the total num-
ber of holograms is sJ 1 1d, and D is the frequency in-
crement. The jth information page is reconstructed
with monochromatic beams with the corresponding
frequency vcj  v0 1 jD. The multiplexing is per-
formed by means of recording many quasi-infinite
holograms in the same volume, causing cross-talk
noise during reconstruction. This cross talk can be
diminished by a proper choice of mutual coherence
function. For example, the mutual coherence func-
tion, gqstd, can be generated from rectangular functions

Fig. 1. Quasi-infinite volume hologram of a wave packet.
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pstd  s1y2T drectsty2T d with unit area and parameter
T  pyD8:

gqstd  pstd p · · · p pstd , (2)

where p denotes convolution operation applied q 2 1
times and the function gqstd has the boundaries 2qT
and qT . The length of the interference pattern, Lc 
qTyv, should be less than the material length Lh.
The amplitude diffraction efficiency for the mutual
coherence function of Eq. (2) follows from Eq. (1):

Gqsjd  ssin jT yjT dq, (3)

where j  v 2 vcj  v 2 sv0 1 jDd. This function
has its maximum at j  0 and zeros at j  nD for any
integer n fi 0. For recall of the jth information page,
the reconstruction wave is tuned to the jth central
frequency vcj  v0 1 jD, and only the jth hologram is
reconstructed without any cross talk.

In practice, since the frequency bandwidth of optical
radiation used for hologram recording is always lim-
ited, the mutual coherence function spreads to infinity,
thus violating the condition that a quasi-infinite holo-
gram must be obtained and leading to a certain level
of cross talk. To account for such physical limitations
we chose to truncate the mutual spectral density of
the reference and signal radiation Gqsjd (which is pro-
portional to the diffraction eff iciency), using a square
window rectsjy2Vd. The introduced bandwidth 2V

limits the number of multiplexed holograms to the
value J ø 2VTyp. We also notice that since during
the changing of the multiplexing frequency vcj the mu-
tual spectral density of jth hologram is shifted by the
value jD, the total spectral bandwidth employed is 4V.

A new mutual spectral density Gqsjdrectsjy2Vd
can be generated in practice, since it possesses the
same zero crossings as Gqsjd and cross-talk noise will
not be generated. However, its corresponding mutual
coherence function,

gq
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Gqsjdexpsijtddj  gqstd p sinsVtdypt ,

(4)

will need to be recorded in a material of infinite lon-
gitudinal extent (for q  1; see Fig. 2). The bound-
aries of the ideal mutual coherence function, 2qT and
qT have been extended to infinity owing to the con-
volution with the sinsVtdysptd [see Eq. (2)]. The ma-
terial boundaries introduce truncation of the mutual
coherence function of Eq. (3) by a rectangular window
rectsty2Thd, where Th  Lhyv. Finally, the diffraction
efficiency of such a truncated hologram is

Gq
0sjd 

Z Th

2Th

gq
0stdexps2ijtddt

 Gqsjdrectsjy2Vd p 2 sinsThjdyj . (5)

Owing to the convolution operation, we can observe
from Eq. (5) that the spectrum Gq

0sjd is different from
the spectrum GqsjdrectsjyVd, causing cross talk.

We define a cross-talk factor Qsjd, which is the devia-
tion of the practically achievable diffraction efficiency
Gq
0sjd from that which does not introduce cross talk,

Gqsjdrectsjy2Vd:

Qsjd  Gq
0sjd 2 Gqsjdrectsjy2Vd
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We next estimate the integral given by Eq. (6), us-
ing an asymptotic evaluation of gq

0std from Eq. (4) for
a value of t that is a large parameter following the
boundary value theorem of Fourier integral evalua-
tion.10 The principal term of the asymptotic evalua-
tion of the Fourier integral Eq. (4) is given by the
boundary values of the function Gqsjd, if these values
are not zero, yielding

gq
0std , GqsVdsinsVtdypt . (7)

Substituting Eq. (7) into Eq. (6) yields

Qqsjd ,
1
p

GqsVd hsifsV 1 jdThg 1 sifsV 2 jdThgj ,

where the integral sine is given by sisxd  2
R`

x ssin uy
uddu. Notice that the sisxd function in Eq. (7) de-
creases very rapidly owing to the large values of Th
(i.e., the longitudinal extent of the recording material
is large compared with the support of the mutual co-
herence function). For cross-talk noise calculation we
need values of jQqsjdj2:

jQqsjdj2,
1

p2
Gq

2sVd hsi2fsV 1 jdThg

1 si2fsV 2 jdThgj . (8)

For characterization of the cross-talk noise we next
consider reconstruction of the hologram corresponding
to j  0, i.e., reconstruction with center frequency v0.
The normalized diffraction efficiency for this hologram
Gq

0s0d ø 1, and the cross-talk diffraction eff iciencies
Gq

0s2jDd are generated. The amplitude of the jth
cross-talk noise term is Nj  SjQs2jDd, where Sj is
the amplitude of the jth signal with j fi 0. The total
amplitude noise N that is due to cross talk is a coher-
ent sum,

N 
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where J 1 1 ø J is the total number of multiplexed
holograms. The power of the cross-talk noise is

kjNj2l 

√
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!
jQs jDdj2, (9)

Fig. 2. Recording of the nonideal coherence function in a
medium with a f inite longitudinal dimension.
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where we assume that Sj are statistically indepen-
dent complex random quantities with average power
kjSj j2l  1 and use the fact that the number of holo-
grams is large, such that the sum of the cross products
of the type SkQskDdSl

pQpslDd is close to zero.
We estimate the value kjN j2l by use of Eq. (8). The

spectral boundaries of our recorded mutual spectral
densities satisfy JD # 2V # sJ 1 1dD. We need to find
V such that the function Gq

2sVd makes a maximum
contribution to the cross-talk noise for a given value
of J. This occurs when V  sJy2 1 1y2dD, providing
the value Gq

2sVd ø 1ysVT d2q. At the multiplexing
frequencies closest to the V boundaries [i.e., j 
6sJy2dD], the argument of si2fsV 6 jdThg ; si2sxd in
Eq. (8) is xJ/2  sDy2dTh, which is also a minimum
value of x for all multiplexing frequencies jj . Again
using the fact that Th is chosen to be a large parameter,
we employ asymptotic approximation si2sxd , 1yx2.
Using this approximation and the choice and definition
of V, we can rewrite Eq. (8) as

jQqs jDdj2,
1

p2 1ysVT d2q
Ω∑µ
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Substituting the above relation into Eq. (9) yields

kjN j2l ,
2

p2sVT d2q

J/2X
k1

4
s2k 1 1d2sThDd2

, (10a)

where we have introduced the summation over index
k, defined by k  Jy2 2 j , and a factor of 2 was
introduced to account for the summation over the
negative indices in Eq. (9). For large values of J, the
series in relation (9) converges to

kjN j2l ,
1

p2sVT d2q

µ
T
Th

∂2
. (10b)

Relation (10b) shows that for a large number of mul-
tiplexed holograms, VT ø pJy2 is large, significantly
decreasing the multiplexing cross talk. To satisfy the
condition Th .. qT , we can choose the hologram length
to be twice the spatial extent of the mutual coherence
function, i.e., Th ø 2qT , yielding from relation (10b)

SNR , s2pqd2spJy2d2q. (11)

For example, if J  103, and q  2, the resultant
signalynoise ratio is ,1014, indicating that the cross
talk associated with the finite-frequency bandwidth is
negligibly small for quasi-infinite holograms.

Finally, we estimate the information capacity limit
I of wavelength-multiplexed quasi-infinite holograms,
applying the Shannon formula11:

I  MJ log2 SNR . (12)

Here M is the number of pixels in an information page,
J is the number of wavelength-multiplexed holograms,
and the signalynoise ratio is provided by relation (11).
Consider the dependence of information capacity
on the geometrical parameters of the recording vol-
ume. It can be seen that J ø z sLhyld s1y2qd, where
z  4Vyv0 is the ratio of the whole frequency interval
4V used for multiplexing to the center frequency v0;
l is the average wavelength of radiation inside the
recording medium; and M  SA2yl2, where S is the
cross-section area and A is the angular aperture of
the signal beam inside the hologram. The volume of
the recording material used for multiplexing quasi-
infinite holograms is Vh ø LhS. Taking this into
account, we obtain MJ  sA2zVhdys2ql3d. Corre-
spondingly, the signalynoise ratio is

SNR ø s2pqd2
µ

pz

4q
Lh

l

∂2q
,

and the information capacity is

I ø
A2z

q
Vh

l3 log2

∑
2pq

µ
pz

4q
Lh

l

∂q∏
.

For example, in the case of a cube-shaped recording
material with 1-cm sides, q  2, l  0.5 mm, and
A  z  0.2, we obtainI , 1012 bits.

In summary, the cross talk of quasi-infinite holo-
grams associated with the finite-frequency bandwidth
is shown to be extremely small, which allows one to
consider the method of quasi-infinite holograms as a
means of developing virtually orthogonal multiplexing
of two-dimensional spatial signals.
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