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We optimize the threshold gain for cylindrical composite (semiconductor–dielectric–metal) waveguides (WGs) with
various metal claddings. We show that the optimal dielectric width is invariant with respect to the imaginary part of
the permittivity of the metal, ε00M , and weakly dependent on the real part, ε0M . To explain this behavior, we compare
optimal geometries ofWGs with different semiconductor permittivities, ε0G. Results from these comparisons indicate
that the optimal effective index parallels the optimal threshold gain in its relation to εM . We use our results to
heuristically propose an analytical expression for the optimal threshold gain that approximates the numerical
solution to within a factor of two over the range of explored ε0G. Finally, we use data from our optimizations to
obtain approximate analytical expressions for the optimal dielectric width and threshold gain as functions of
the total WG radius. © 2013 Optical Society of America
OCIS codes: (310.4165) Multilayer design; (310.6628) Subwavelength structures, nanostructures; (000.4430) Numeri-

cal approximation and analysis; (260.3910) Metal optics; (140.5960) Semiconductor lasers; (230.7370) Waveguides.
http://dx.doi.org/10.1364/OL.38.005161

Since their inception a half-decade ago [1], subwave-
length metal-clad lasers have become the subject of
intense research. Because the cladding prevents coupling
among devices, such nanolasers make particularly strong
candidates for densely packed arrays of individually
addressable coherent sources [2]. Recent demonstra-
tions of continuous-wave operation via electrical injec-
tion near and at room temperature [3,4] suggest that
subwavelength metal-clad lasers may become practical
elements of such nanophotonic arrays. Metals, however,
are lossy at telecom wavelengths, and this shortcoming
necessitates the incorporation of dielectric shields into
nanolaser designs.
Mizrahi et al. [5] first introduced the shield, a low

refractive index dielectric layer located between the gain
region and metal cladding, which mitigates the losses
incurred from the overlap of the electromagnetic mode
with the metal. Employing the equivalence between a
circularly symmetric infinite waveguide (WG) and a
cylindrical laser cavity with perfectly reflecting end mir-
rors, Mizrahi et al. used a numerical technique to show
that a nonobvious optimal shield width exists for a
composite (semiconductor–dielectric–metal) WG (CWG)
with a fixed total radius. The optimal shield reduces the
metal loss without displacing too much of the gain
medium and corresponds to the shield width that yields
the minimum threshold gain. To date, researchers have
reported a number of lasers, both optically and electri-
cally driven, designed with an optimized shield to reduce
the threshold of the lasing “photonic” mode [3–4,6–8].
Research has also progressed in metallic lasers support-
ing plasmonic modes [9,10]. While the results of this
Letter do apply to such devices, we have found that
the introduction of the shield to the structure of Ref. [10],
for example, only increases the threshold gain of the las-
ing mode. Therefore, the results of this Letter hold the
most significance for devices utilizing photonic modes.
The choice of metal cladding affects laser design, fab-

rication, and performance in several ways. Perhaps most

obviously, different metals exhibit varying degrees of
loss or, equivalently, the imaginary part of the electric
permittivity, ε00M , differs for each metal. Additionally, met-
als adhere differently to the shield layer (usually SiO2 or
SiN [3–8]), react differently with etchants, and exhibit
differing stability to the ambient environment. Thus,
the ability to predict the behavior of a given CWG struc-
ture for a wide range of possible metal claddings holds
significant value.

Recent experimental work [4] has suggested that the
true optimal shield width ought to account for both ther-
mal and electromagnetic effects. When thermal effects
are considered, the shield width should be reduced
because the thermal resistance of the low-index dielec-
tric usually exceeds that of any other material in the
structure. As a result, the true optimal shield width will
be less than that suggested by a model that accounts for
electromagnetic effects only. The optimal shield width
obtained from the method of Ref. [5], therefore, may
be considered as an upper bound to the true optimum.

Consider the cylindrical CWG with material and geo-
metrical properties, as well as refractive index and
electric field profiles, described by Fig. 1. The semicon-
ductor core, lossless dielectric shield, and metal cladding
are characterized electrically with permittivities εG �
ε0G � jε00G, εD, and εM � ε0M − jε00M , respectively. The width
of the shield layer ΔD is given by the difference
ΔD � Rtotal − Rcore. In general, the electromagnetic field
inside such a CWG may be expressed as an infinite, dis-
crete sum of solutions to the source-free wave equation,
the natural modes of the CWG. Assuming the CWG
consists of nonmagnetic materials, each mode may be
described by its complex wavenumber k, defined as
k2 � εRk20 � εRω

2∕c2 � εR�2π∕λ0�2 � β2ρ � β2z where, gen-
erally, the relative permittivity, εR, and the transverse and
longitudinal propagation constants, βρ and βz, respec-
tively, are all complex [11], and λ0 is the free space wave-
length. Along with εR, βρ differs within each layer of the
CWG, whereas βz remains constant everywhere for a

December 1, 2013 / Vol. 38, No. 23 / OPTICS LETTERS 5161

0146-9592/13/235161-04$15.00/0 © 2013 Optical Society of America

http://dx.doi.org/10.1364/OL.38.005161


given mode [11]. The boundary value problem to be
solved consists of finding the eigenvalues to the system
of transcendental equations that describes the CWG. In
this Letter, we work under the threshold condition,
β00z � 0, and the eigenvalues correspond to the zeros in
the complex (ε00G, β

0
z) plane. Further, we concern our-

selves only with the TE01 mode because this mode
exhibits more favorable properties for use in a nanolaser
than neighboring modes [5].
The threshold gain, ε00Gth, is the value of ε

00
G necessary to

offset the metal loss and make the imaginary part of the
propagation constant vanish; i.e., ε00Gth � ε00G�β00z � 0� [5]. It
is related to the material threshold gain per unit length,
gth, via gth � 2πε00gth∕�λ0ng�, where ng is the group refrac-
tive index [12]. It is obvious that, all else equal, a more
lossy metal will lead to a larger threshold gain. However,
what is not immediately clear is the effect of the metal
loss on the optimal shield width. Intuitively it seems that,
all else equal, a CWG with a high-loss metal, such as alu-
minum at room temperature, jε00M j ≫ 1, necessitates a
thicker optimal shield for the TE01 mode than a low-loss
metal, such as silver or aluminum at a lower temperature,
jε00M j ∼ 1. However, our intuition is wrong. The optimal
shield width increases discontinuously, from zero when
ε00M � 0, to a constant, nonobvious value for all ε00M > 0.
Applying the methodology of Ref. [5] to the material-

geometry system in Fig. 1 with fixed Rtotal, and varying
only εM , we observe that the optimal shield width,
ΔD;opt, or, equivalently, the optimal core radius, Rcore;opt,
is constant with respect to changes in ε00M and nearly con-
stant with ε0M . These results are shown in Fig. 2, where
ε00Gth is plotted as a function of Rcore with εM and ε0G as
parameters. Constants include εD � 2.16, λ0 � 1.55 μm,
and Rtotal � 0.45 μm. The chosen value of Rtotal is suffi-
ciently large to yield relatively low ε00Gth, but also suffi-
ciently small to yield a relatively high spontaneous
emission factor, for a laser cavity based on this CWG.
The parameterized metal permittivities are −130 − j3.0
(bold line), −130 − j0.3 (dash line), and −260 − j0.3
(dashed–dotted line), approximately representative of
silver at room temperature, silver at liquid nitrogen tem-
perature, and aluminum at liquid helium temperature, all
near λ0 � 1.55 μm, respectively [13–15]. The two values
of ε0G are 11.56 (blue) and 6.76 (red), representative of

InGaAsP and GaS, respectively [16]. With the order of
magnitude reduction in ε00M , Rcore;opt of the InGaAsP
(GaS) CWG remains constant at 0.272 μm (0.313 μm),
and changes by less than 1% (2%), with the doubling
of jε0M j. Equivalently, ΔD;opt remains constant with ε00M
and varies from 0.178 to 0.180 μm (0.137 to 0.141 μm)
with jε0M j. Consistent with the reasoning that a less lossy
metal requires less compensation from the gain medium,
we further observe that an order of magnitude change
in ε00M causes an order of magnitude reduction in ε00Gth
for both CWGs. Finally, we see that as jε0M j is increased
by a factor of two, ε00Gth decreases by a factor of
2.53 (2.63).

Accompanying the invariance of Rcore;opt with respect
to ε00M and its weak dependence on ε0M , the real part of the
optimal effective index, neff;opt

0, where neff � βz�2π∕λ0�
and neff;opt � neff�Rcore;opt�, similarly exhibits invariance
and weak dependence upon ε00M and ε0M , respectively.
In Fig. 3, we show that neff;opt

0 remains constant as ε00M
is reduced by an order of magnitude. When jε0M j is
doubled, neff;opt

0 changes by less than 1% (2%), for the
InGaAsP (GaS) CWGs. When considering a larger range
of ε0G values, as shown in Fig. 4, we observe that both
ΔD;opt and neff;opt increase monotonically with ε0G.
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Fig. 2. Threshold gain ε00Gth as function of Rcore for two values
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Inspection of the explicit definition of threshold gain
[5] helps to explain the observed behavior in terms of
the electric field E,

ε00Gth � ε00M
R
Metal jEj2dAR

Gain jEj2dA
�

ε00M
R
∞
Rtotal

jE�ρ�j2ρdρ
R Rcore
0 jE�ρ�j2ρdρ

; (1)

where the second equality is introduced for modes with
azimuthal symmetry, such as the TE01 mode under con-
sideration. Allowing ourselves the heuristic assumption
that the electric field inside a bulk polarized material with
relative permittivity, εR, is reduced from its free space
value by a factor of εR [11], then, according to Eq. (1),
we would anticipate that ε00Gth is proportional to
ε00M�ε0G�2∕�ε0M�2. However, Fig. 2 shows that ε00Gth increases
with a decreasing ε0G. Obviously, our problem does not
consist of a bulk-polarized medium, so we modify our
heuristic approach by incorporating neff into the propor-
tionality. Namely, by studying the results of Fig. 4, we
observe that ε00Gth is roughly proportional to ε02G, if we
reduce ε0G by the factor n2

eff to account for the guided
nature of the mode inside the CWG. Hence, we posit
an approximate expression to Eq. (1),

ε00Gth;opt ≅ ε00Mfε0G∕�ε0M�nopt
eff �2�g2: (2)

In Fig. 5, we plot εGth;opt 00 according to Eq. (2) as a func-
tion of ε0G, along with the numerical solution to Eq. (1).
We observe that Eq. (2) approximates the numerical sol-
ution to within a factor of two for all ε0G. Furthermore, if
ε00Gth and neff are substituted for εGth;opt 00 and neff;opt, then
Eq. (2) approximates the numerical solution to Eq. (1)
within a factor of two for all Rcore > 300 nm. Figure 6
shows the percentage error in Eq. (2), with this substitu-
tion over the range of Rcore and ε0G values used in
Figs. 3–5. The error is defined as 100jεGth;N 00

− εGth;A
00j∕

εGth;N
0, where the subscripts N and A refer to numerical

and analytical, respectively. We observe that in the
region of most interest to the designer, i.e., near
Rcore;opt, the error is quite low, while it increases rapidly
for smaller Rcore, due to the more rapid variation of neff
with decreasing Rcore, per Fig. 3. Admittedly, Eq. (2) is
not rigorously derived; however, it clearly holds value
as a design tool.

We summarize the nonintuitive main result of this
Letter in the following manner. We begin with a
material-geometry selection and solve the original eigen-
value problem by obtaining the zeros in the (ε00G, β

0
z) plane

[5]. We continue this process, varying Rcore with Rtotal
fixed, until a minimum threshold gain, εGth;opt 00, and the
corresponding Rcore;opt and neff;opt are found. Next, we
change the metal permittivity. The zeros in the (ε00G, β

0
z)

plane necessarily shift. However, by maintaining the
imposed threshold condition, n00

eff � 2πβ00z∕λ0 � 0, we
force ε00G to respond proportionally to changes in ε00M .
Because n0

eff remains unchanged or changes very slightly,
the electric field distribution in the CWG remains
unchanged or changes very slightly. Prior to changing
εM , the electric field distribution was such that
ε00Gth � εGth;opt

00, and so it follows that the new threshold
gain is also an optimum. The virtual lack of change of n0

eff
and the constraint that n00

eff � 0 are sufficient conditions
for the invariance and weak dependence of ΔD;opt
(equivalently, Rcore;opt) with respect to ε00M and ε0M ,
respectively.

The invariance and weak dependence of ΔD;opt on ε00M
and ε0M implies that, once an optimized geometry is found
for a given set of ε0G, εD, and λ0, different metals may be
used without affecting the numerical results. For exam-
ple, if laser cavities employing silver cladding are
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rigorously designed, they need not be redesigned if the
fabrication process necessitates the use of gold or
aluminum claddings. Furthermore, data obtained from
executing the optimization procedure over a wide geo-
metric parameter space may be used in the development
of approximate analytical expressions to expedite the
design process. Based on the preceding results, approx-
imations to ΔD;opt may be applied to structures with an
arbitrary metal cladding. We present several analytical
approximations that we have discovered through the
use of our numerical optimization scheme. All of the
results were verified for material properties representa-
tive of the InGaAsP CWG at λ0 � 1.55 μm.
The optimal shield thickness ΔD;opt is nearly a linear

function of Rtotal, as seen in Fig. 7. An approximation
to the numerical solution that describes this relation is
Δ;D;opt ∼ �0.71Rtotal − 0.14� μm, which is accurate to
within 2.5% over the range of Rtotal values from 0.30 to
0.70 μm. For the range of Rtotal values above 0.45 μm,
a better fit is ΔD;opt ∼ �0.74Rtotal − 0.16� μm, which is
accurate to within 1%.
While the value of εGth;opt 00 does depend upon ε00M , we

may still approximate it in a similar fashion. In Fig. 7
we also plot the numerical solution of log10�εGth;opt 00� ver-
sus Rtotal on a linear scale. Clearly, the logarithm of
εGth;opt

00 is almost inversely proportional to Rtotal. An
approximation expressing this fact, log10�εGth;opt 00� �
�−7Rtotal � 0.064� μm, is also plotted, and is accurate
to within 10% over the range of Rtotal values from 0.35
to 0.75 μm. Thus, we may approximate εGth;opt

00 explicitly
in terms of the material parameters via Eq. (2), or

implicitly through the total radius via a logarithmic
approximation.

In conclusion, we have used a numerical technique
[5] for threshold gain optimization of CWGs and, implic-
itly, laser cavities. We have shown that ΔD;opt is invariant
with respect to ε00M and weakly dependent upon ε0M , and
explained this via the corresponding behavior of n0

eff .
We have further shown that εGth;opt

00 may be approxi-
mated by ε00M�ε0G�2∕�ε0M�neff;opt

0�2�. Finally, we have
formulated several analytical approximations useful
for the expedited design of optimally functioning
semiconductor–dielectric–metal nanolaser cavities.
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