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We theoretically consider the existence of multiple nonzero components of the second-order nonlinear susceptibil-
ity tensor, χ�2�, generated via strain-induced symmetry breaking in crystalline silicon.We determine that, in addition
to the previously reported χ�2�xxy component, the χ�2�yyy component also becomes nonzero based on the remaining sym-
metry present in the strained material. In order to characterize these two nonlinearities, we fabricate Fabry–Perot
waveguide resonators on 250 nm thick silicon-on-insulator wafers clad with 180 nm of compressively stressed
(−1.275 GPa) silicon nitride. We measure the shifts in these devices’ modal effective indices in response to several
bias electric fields and calculate the χ�2�eff;xxy and χ�2�eff;yyy nonlinear susceptibility tensor elements induced by the break-
ing of the guiding material’s inversion symmetry. Through the incorporation of finite element simulations encom-
passing the theoretical distribution of strain, the applied bias field, and the optical modes supported by the
waveguide geometry, we extract two phenomenological scaling coefficients which relate the induced optical
nonlinearities to the local strain gradient. © 2014 Optical Society of America
OCIS codes: (050.0050) Diffraction and gratings; (190.0190) Nonlinear optics; (000.4430) Numerical approximation

and analysis; (160.2100) Electro-optical materials.
http://dx.doi.org/10.1364/OL.39.001693

Lithium niobate is the most commonly used material for
optical modulation due to its high second-order nonlinear
susceptibility of 360 pm∕V [1], its fast response time,
and the wide range of waveguide configurations it sup-
ports. However, lithium niobate modulators suffer from
several considerable limitations, including high substrate
cost, large physical footprint, and difficulty of integration
with the silicon-on-insulator (SOI) material platform
commonly used in photonics and microelectronics.
Therefore, it is desirable to create comparable linear
electro-optic effects in an SOI-platform through CMOS-
compatible fabrication processes. Several unique meth-
ods have been pursued to this end [2–4], but currently,
none simultaneously meet all of the strenuous require-
ments needed for an implementation in telecommunica-
tion applications.
More recently, strained silicon has become a subject of

great interest within the field of nonlinear optics.
Through the breaking of crystalline silicon’s inversion
symmetry via physical strain, a nonzero χ�2�xxy component
of the second-order nonlinear susceptibility tensor may
be generated and exploited in such nonlinear optical
processes as second-harmonic generation and linear
electro-optic modulation. This effect was first demon-
strated by Jacobsen et al. in 2006 [5], and the initial dis-
covery has since been expanded upon by a number of
research groups [6–8].
The highest nonlinearity generated in a strained silicon

waveguide is χ�2�xxy � 190 pm∕V; this value was reported
by Chmielak et al. in 2013 [9]. The local optical nonlinear-
ity is known to be linearly proportional to the gradient of
the induced strain, and the impressive value reported in
the literature was achieved by maximizing the strain gra-
dient near the waveguide sidewalls.
Initial theories have asserted that a net electric field is

induced by the displacement of bound charge, and

attempts based upon this theory have been made to
theoretically relate the strain gradient to the magnitude
of the optical nonlinearity [10]. These efforts have
highlighted a discrepancy of approximately 3 orders of
magnitude between theoretically predicted and experi-
mentally observed values. Ab initiomodels have demon-
strated how the displacement of atoms leads to nonlinear
effects through time-dependent density functional theory
[6], but these models have not as of yet provided an
explicit relationship between local strain gradients and
the induced nonlinear optical response.

Until modifications can be made to existing theoretical
models, or until entirely new models are established, the
extraction of a phenomenological scaling coefficient re-
lating the local strain gradient to the optical nonlinearity
will be advantageous in the design and characterization
of devices incorporating strained silicon.

In this manuscript, we consider the breaking of crys-
talline symmetry through strain on the scale of a single
unit cell of crystalline silicon. Through observation of the
remaining symmetries present in the cell, we determine
which components of the strain-induced χ�2� tensor are
not identically required to be equal to zero. Through this
analysis we find that, in addition to the previously ob-
served χ�2�xxy, there are three other unique tensor compo-
nents that are generated: χ�2�yyy, χ

�2�
xyz, and χ�2�zzy. These three

tensor components are predicted to be nonzero in the
presence of a gradient of x or z-oriented strain along
the y direction, with the coordinate axes defined in Fig. 1.

To verify our predictions, we fabricate Fabry–Perot
resonators on 250 nm thick SOI wafers [11] and clad
them with 180 nm of compressively stressed silicon
nitride. By applying bias electric fields vertically across
the waveguide, we extract the waveguides’ effective
nonlinear coefficients χ�2�eff;xxy and χ�2�eff;yyy, in addition to
χ�3�eff;xxyy and χ�3�eff;yyyy. Then, we use finite element models
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to determine scaling coefficients which relate the local
strain gradient in silicon to each of the two measured
χ�2� tensor components, aiding in the design and charac-
terization of future optical devices composed of strained
silicon. Our approach may be expanded upon in the
future to determine the most advantageous implementa-
tions of strain relative to silicon’s crystallographic
orientation.
The derivation of the interrelationships among the 27

components of a nonspecific tensor of rank three
through the analysis of a material’s symmetry is a
well-established process [12]. To the best of our knowl-
edge, this technique has not yet been explicitly applied to
strained silicon. In the following, we use this method to
predict the existence of tensor components not yet
reported in the literature.
Consider a unit cell of crystalline silicon, shown in

Fig. 1(a). The lattice is centrosymmetric, which means
the x, y, and z axes may all be inverted about a given
point without moving any of the silicon atoms into posi-
tions which were not previously occupied. The transfor-
mation matrix corresponding to the inversion operation
is given by

Msymm � �−1 0 0; 0 −1 0; 0 0 −1 �: (1a)

Because performing this transformation leaves the
material unchanged, it is required that all of the material’s
physical properties be invariant under the transforma-
tion. By enforcing that the third rank χ�2� tensor be
unchanged by the centrosymmetry transformation, it is
straightforward to conclude that every element of the
tensor must equal zero. This is consistent with the
well-known fact that centrosymmetric materials do not
exhibit the Pockels effect.
However, asymmetric strain removes the unit cell’s

centrosymmetry, as shown in Fig. 1(b); inverting about
all three axes will clearly place atoms in positions that
were not previously occupied. The symmetry that still re-
mains, however, is rotational symmetry of 180° about the
y axis. This new transformation may be represented by a
second matrix, given as

Masymm � �−1 0 0; 0 1 0; 0 0 −1 �: (1b)

Again enforcing that the χ�2� tensor be unchanged by the
transformation matrix, we now find that several compo-
nents of the χ�2� tensor are not identically equal to zero.

These components are χ�2�xxy, χ
�2�
yyy, χ

�2�
zzy, χ

�2�
xyz, and all of

their index permutations.
The existence of a nonzero χ�2�xxy coefficient has been of

particular interest in the context of linear optical modu-
lation, as it allows the effective index of a TE-like mode
to change linearly in response to a vertically applied elec-
tric field. The χ�2�yyy component is noteworthy as well, as it
allows for the same type of modulation if a TM-like mode
is considered instead.

In order to experimentally validate the existence of the
χ�2�xxy and χ�2�yyy tensor coefficients, we fabricated Fabry–
Perot waveguide resonators on SOI wafers consisting
of 250 nm thick silicon layers. The waveguides were
450 nm wide, and the grating periods chosen for the
TE- and TM-like modes were 312 and 376 nm, respec-
tively. The cavity lengths were chosen to be 100 μm, en-
suring that many cavity resonances would be contained
within the transmission spectra’s stop bands. Each of the
Bragg mirrors was made using 70 grating periods to
assure sufficiently high reflectivity.

To fabricate our waveguides, we first spun hydrogen
silsesquioxane onto SOI wafers. We then used electron
beam lithography and reactive ion etching to etch the pat-
tern of our waveguides into the wafers. Next, we used
plasma-enhanced chemical vapor deposition (PECVD)
to clad the waveguides with 180 nm of amorphous silicon
nitride. By selectively generating only lower frequency
plasmas during the PECVD process, we were able to pro-
duce a compressive stress within the silicon nitride layer
of −1.275 GPa. The silicon nitride layer did not extend
continuously over the waveguide, but was instead
separated into discrete layers, as shown in Fig. 2.

Next, we deposited 1020 nm of amorphous silica on
top of the nitride layer, also through PECVD. To create
electrodes, we sputtered 1.2 μm of gold over the entire
sample, using a thin layer of titanium as an adhesion
layer. When applying a voltage across our waveguides,
the gold layer served as the top electrical contact,
whereas the silicon substrate of the SOI wafer was used
as the bottom contact. The resulting waveguide cross
section is shown in Fig. 3(a), and the device layout is
illustrated in Fig. 3(b). As a result of scanning electron
microscopy done throughout the fabrication process,
the waveguide cross sections were known to a high
degree of accuracy.

The passive transmission spectra for the fabricated de-
vices are shown in Fig. 4. For the TE-like mode, we ob-
tained a stop band centered at 1540 nm, whereas for the
TM-like mode it was centered at 1537 nm. Respectively,

Fig. 1. (a) A single unit cell of silicon in the absence of strain,
showing a few bonds to illustrate the relative locations of atoms
within the cell. (b) A single unit cell of silicon in the presence of
a y-oriented gradient of x-oriented strain, demonstrating the
loss of centrosymmetry and the existence of rotational
symmetry of 180° about the dashed line.

Fig. 2. ESEM side view of the edge of a 250 nm tall waveguide
clad with 180 nm of silicon nitride through PECVD. Two distinct
regions have formed. One comes in contact with the top surface
of the waveguide, whereas the other grows on the substrate.
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these stop band locations correspond to modal effective
indices of 2.468 and 2.044.
By applying bias voltages across the gold film and the

silicon substrate, we were able to induce vertical electric
fields across the waveguides. Theoretically, the average
electric field within the waveguide resulting from an
applied voltage of �1 V was calculated to be Ey;avg �
−5.87e4 Vm−1.
The estimated Q-factors of the cavity resonances were

1500 for the TE-like mode and 750 for the TM-like mode,
corresponding to FWHM of ∼1 nm and ∼2 nm, respec-
tively. There were smaller resonances superimposed
over the fundamental ones, which were caused by
reflections occurring at the waveguide end facets due
to impedance mismatches.
In order to measure the Pockels effect, we chose

one resonance for each of the two waveguides, then
measured the changes in the these resonances’ peak
wavelengths that resulted from the application of volt-
ages ranging from −50 V to �50 V. These resonance
shifts were then related to changes in the modal effective
indices through the simple equation

Δn � n
λ
Δλ: (2)

For the TE- and TM-like modes, the chosen resonances
were centered at wavelengths of 1542.175 and
1536.110 nm, respectively.

Because the waveguides possessed third-order optical
nonlinearities in addition to the second-order nonlinear-
ities of interest, the modes’ effective indices varied quad-
ratically with respect to the applied voltage. By fitting our
measured index shifts to a quadratic curve, we were able
to extract both the second- and third-order nonlinearities
for each mode. The experimental data and the fitted
curves are both shown in Fig. 5. We used the following
expressions to relate our observed index shifts to the
second- and third-order nonlinearities:

Δneff;TE � χ�2�eff;xxyEavg

neff;TE
� 3χ�3�eff;xxyyE

2
avg

2neff;TE
; (3a)

Δneff;TM � χ�2�eff;yyyEavg

2neff;TM
� χ�2�eff;yyyyE

2
avg

2neff;TM
: (3b)

In these equations, Eavg is the average vertical bias
electric field within the silicon portion of the waveguide
cross section. From the trend lines shown in Fig. 5,
we obtained the following values for our waveguides’
nonlinear susceptibility components: χ�2�eff;xxy �
�−74� 3� pm∕V, χ�2�eff;yyy � �188� 6� pm∕V, χ�3�eff;xxyy �
�2.9e − 17� 2e − 18� m2∕V2, and χ�3�eff;yyyy � �1.7e − 16�
7e − 18� m2∕V2.

In order to determine the coefficients relating the
strain gradient to the second-order optical nonlinearities,
we enforced the condition that an applied bias voltage,
chosen to be too small to interact significantly with
the third-order nonlinearities, must lead to shifts in the
modal effective indices that match our generated trend
lines. We required that the local refractive index within
the silicon waveguide vary with the stress, the strain
gradient, and the local electric field as

Fig. 3. (a) Waveguide cross section resulting from the outlined
fabrication process. (b) The device outline showing, from left to
right, the input facet, a 90° bend, the cavity located between two
Bragg mirrors, and the output facet.

Fig. 4. Transmission spectra of the (a) TE- and (b) TM-like
modes, in the absence of an applied voltage.

Fig. 5. Observed index changes of the TE- and TM-like modes’
resonances in response to applied voltages ranging from −50 V
to �50 V.
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Δnx;Si � −C1sxx − C2�syy � szz� �
Cxxy

�
dexx
dy

�
Ey

nx;Si
; (4a)

Δny;Si � −C1syy − C2�sxx � szz� �
Cyyy

�
dexx
dy

�
Ey

2nx;Si
; (4b)

where C1 and C2 are the first and second stress optical
coefficients of silicon, respectively, sxx, syy, and szz
are the components of stress within silicon, exx is the
x-oriented component of strain within silicon, and Cxxy
and Cyyy are the unknown scaling coefficients of interest

for χ�2�xxy and χ�2�yyy, respectively, such that

χ�2�xxy � Cxxy

�
dexx
dy

�
; (5a)

χ�2�yyy � Cyyy

�
dexx
dy

�
: (5b)

The first and second stress optical coefficients of silicon
were taken to be −11.35e − 12 Pa−1 and 3.65e − 12 Pa−1,
respectively [13], and the stress, strain, and electric field
values were taken from our finite element model
analysis.
An applied voltage of�1 V changes the effective index

of the TE- and TM-like modes by 1.77e − 6� 8e − 8 and
−2.71e − 6� 8e − 8, respectively. These changes are
achieved when Cxxy equals (−5.89e−15�2.4e−16�m2∕V
and Cyyy equals (3.06e − 14� 9.8e − 16� m2∕V. It should
be noted that any uncertainties in the initial distribution
of stress within the silicon nitride layer will lead to in-
creased variability in the reported scaling coefficients.
Although deviations from the mean thin film stress of
−1.275 GPa are assumed to be negligible, the resulting
uncertainties are not readily quantified.
The highest local nonlinearities are found to exist near

two edges where the silicon nitride comes into contact
with the waveguide sidewalls. There is an additional non-
linearity resulting from the upper nitride layer straining
the top of waveguide, but this effect is comparatively neg-
ligible. The effective nonlinearity resulting from the
strain gradient is anticipated to increase as the wave-
guide width is decreased, resulting in a larger overlap
between the optical mode and the higher local nonlinear-
ities. This effect has been observed experimentally in
previous works [9].
The proportionality constants relevant to wave-mixing

applications are not expected to be equivalent to the ones
given here, and should be independently measured
through such techniques as phase-matched second-
harmonic generation [6].

We have shown that, in addition to the well-known
χ�2�xxy, which is generated by the breaking of centrosymme-
try in strained silicon, there also exists a nonzero χ�2�yyy.
The existence of this second value is critical because
it enables strained silicon waveguides to modulate both
TE- and TM-like modes.

Additionally, we have extracted phenomenological co-
efficients which relate the locally induced nonlinearities
in strained silicon to the local strain gradient. In the fu-
ture, knowledge of these relationships will allow the ef-
fective nonlinear coefficients of strained silicon
waveguides to be more accurately predicted prior to
fabrication. If properly utilized, this capability will be
beneficial in the design of highly efficient optical modu-
lators and optical wave mixers.
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